If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+31x-16=0
a = 2; b = 31; c = -16;
Δ = b2-4ac
Δ = 312-4·2·(-16)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-33}{2*2}=\frac{-64}{4} =-16 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+33}{2*2}=\frac{2}{4} =1/2 $
| 1.75+x=-19 | | X-4/x+3-1/X=-1 | | 5x−2(x+1)=1/4 | | 4(x-2)=3x+6 | | 38x^2-15x=0 | | x-0.4=2.5 | | 2/3x-9=13 | | 10=2(5-a) | | 2m-18=32 | | 3y=23-8y | | 2/3(6a+9)=20.4 | | (3x+2)+14=2(x+1) | | T2+4t+30=0 | | -47=13-b | | 12y+15=39 | | x^2+2x+4=6x+25 | | 15+3*x=21 | | 43=5x+3 | | 3x+2+72=180 | | m²+m+1=0 | | 3x^2+120x+145=0 | | (X^3+4x^2-32x)/(x+8)=0 | | 3x^2+120+145=0 | | x^2+100x-33600=0 | | 7=4.9+(4.9*n) | | 5x−9=3x+3 | | 8=x÷7x | | (6+y)(5y+9)=0 | | 15+2(5x-4)=37. | | w=4-2 | | 4x−8=3x−8 | | 8x+9=-75 |